Fast IMRT by increasing the beam number and reducing the number of segments
نویسندگان
چکیده
PURPOSE The purpose of this work is to develop fast deliverable step and shoot IMRT technique. A reduction in the number of segments should theoretically be possible, whilst simultaneously maintaining plan quality, provided that the reduction is accompanied by an increased number of gantry angles. A benefit of this method is that the segment shaping could be performed during gantry motion, thereby reducing the delivery time. The aim was to find classes of such solutions whose plan quality can compete with conventional IMRT. MATERIALS/METHODS A planning study was performed. Step and shoot IMRT plans were created using direct machine parameter optimization (DMPO) as a reference. DMPO plans were compared to an IMRT variant having only one segment per angle ("2-Step Fast"). 2-Step Fast is based on a geometrical analysis of the topology of the planning target volume (PTV) and the organs at risk (OAR). A prostate/rectum case, spine metastasis/spinal cord, breast/lung and an artificial PTV/OAR combination of the ESTRO-Quasimodo phantom were used for the study. The composite objective value (COV), a quality score, and plan delivery time were compared. The delivery time for the DMPO reference plan and the 2-Step Fast IMRT technique was measured and calculated for two different linacs, a twelve year old Siemens Primus™ ("old" linac) and two Elekta Synergy™ "S" linacs ("new" linacs). RESULTS 2-Step Fast had comparable or better quality than the reference DMPO plan. The number of segments was smaller than for the reference plan, the number of gantry angles was between 23 and 34. For the modern linac the delivery time was always smaller than that for the reference plan. The calculated (measured) values showed a mean delivery time reduction of 21% (21%) for the new linac, and of 7% (3%) for the old linac compared to the respective DMPO reference plans. For the old linac, the data handling time per beam was the limiting factor for the treatment time reduction. CONCLUSIONS 2-Step Fast plans are suited to reduce the delivery time, especially if the data handling time per beam is short. The plan quality can be retained or even increased for fewer segments provided more gantry angles are used.
منابع مشابه
Evaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کاملDosimetry limitations and pre-treatment dose profile correction for sliding window IMRT
Background: This work investigated the dosimetry limitations of the random and systematic uncertainties of sliding window (SW) intensity modulated radiation therapy (IMRT). Materials and Methods: A Varian 21EX linear accelerator, Pinnacle3 treatment planning system and radiographic film dosimetry was used. The limitations of the SW were studied using beam modulation ranging from 2 to 10...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملMinimizing delivery time and monitor units in static IMRT by leaf-sequencing.
Intensity-modulated radiation therapy (IMRT) requires the determination of the appropriate multileaf collimator settings to deliver an intensity map. The purpose of this work was to attempt to reduce the number of segments required for IMRT delivery and the number of monitor units required to deliver an intensity map. An intensity map may be written as a matrix. Leaf sequencing was formulated a...
متن کاملDirect aperture optimization as a means of reducing the complexity of intensity modulated radiation therapy plans
Intensity Modulated Radiation Therapy (IMRT) is a means of delivering radiation therapy where the intensity of the beam is varied within the treatment field. This is done by dividing a large beam into many small beamlets. Dose constraints are assigned to both the target and sensitive structures and computerised inverse optimization is performed to find the individual weights of this large numbe...
متن کامل